Вариационный подход к анализу модели теплового взрыва в твердом теле
Аннотация
Температурное состояние твердого тела может зависеть как от условий теплообмена с окружающей его поверхность внешней средой, так и от выделения энергии в объеме этого тела, вызванного, например, протеканием процессов в элементах ядерного реактора или экзотермических химических реакций, при поглощением энергии проникающего излучения или переходом в теплоту части электрической энергии при прохождении электрического тока (так называемая джоулева теплота). Если интенсивность объемного энерговыделения возрастает с увеличением температуры, то возможно возникновение предельного установившегося температурного состояния, при котором отвод к поверхности тела выделившейся в его объеме тепловой энергии достигает максимума. При этом малые приращения температуры приводят к увеличению выделения тепловой энергии, которую уже нельзя отвести к поверхности тела путем теплопроводности без дальнейшего возрастания температуры. В итоге установившееся распределение температуры в теле становится невозможным, что и определяет состояние теплового взрыва, получившее такое название в силу того, что соответствующая математическая модель предсказывает в этом случае неограниченное возрастание температуры.
Анализу состояния теплового взрыва посвящено достаточно много работ, связанных с исследованием процессов горения и взрыва в неподвижной среде и проанализированных в монографиях. В большинстве известных работ рассматривают математическую модель, описывающую распределение температуры в случае, когда энерговыделение вызвано экзотермическими химическими реакциями, скорость протекания которых возрастает с увеличением температуры. Зависимость скорости химической реакции от температуры обычно описывают экспоненциальным законом Аррениуса, что приводит к необходимости рассматривать существенно нелинейную математическую модель, содержащую дифференциальное уравнение, в которое входит слагаемое, нелинейно возрастающее с ростом температуры. Даже при упрощающих допущениях эта модель позволяет получить точное решение в аналитическом виде лишь в случае одномерных распределений температуры в двух областях канонической формы: в неограниченной в свой плоскости пластине и в неограниченном по длине круговом цилиндре.
Приближенным численным решением дифференциального уравнения, входящего в нелинейную математическую модель теплового взрыва, удается получить количественные оценки сочетания определяющих параметров, при котором наступает предельное состояние в областях не только канонической формы. Возможности исследования состояния теплового взрыва можно расширить в связи с развитием методов математического моделирования, в том числе методов анализа моделей, описывающих температурное состояние твердых тел.
В данной работе для анализа математической модели теплового взрыва в однородном твердом теле использован вариационный подход, основанный на двойственной вариационной формулировке соответствующей нелинейной задачи стационарной теплопроводности в таком теле. Эта формулировка содержит два альтернативных функционала, достигающих совпадающих значений в своих стационарных точках, соответствующих истинным распределениям температуры. Такое свойство функционалов позволяет не только получить приближенную количественную оценку сочетания параметров, определяющих состояние теплового взрыва, но и установить возможную наибольшую погрешность такой оценки.
Об авторах
В. С. ЗарубинРоссия
Г. Н. Кувыркин
Россия
И. Ю. Савельева
Россия
Список литературы
1. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике: 3-е изд., испр. и доп. М.: Наука, 1987. 502 с.
2. Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю. Температурное состояние диска униполярного генератора // Инженерно-физический журнал. 2014. Т. 87, № 4. С. 796-801.
3. Зарубин В.С., Котович А.В., Кувыркин Г.Н. Устойчивость температурного состояния диска униполярного генератора // Известия РАН. Энергетика. 2016. № 1. С. 127-133.
4. Физика взрыва / Под ред. Орленко Л.П.: 3-е изд., перераб. В 2 т. Т. 1. М.: Физматлит, 2002. 832 с.
5. Зарубин В.С. Моделирование. М.: Издательский центр «Академия», 2013. 336 с.
6. Зарубин В.С., Кувыркин Г.Н. Особенности математического моделирования технических устройств // Математическое моделирование и численные методы. 2014. № 1(1). С. 5-17. DOI: 10.18698/2309-3684-2014-1-517
7. Самарский А.А., Галактионов В.А., Курдюмов С.П., Михайлов А.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987. 480 с.
8. Зарубин В.С., Кувыркин Г.Н. Математическое моделирование термомеханических процессов при интенсивном тепловом воздействии // Теплофизика высоких температур. 2003. Т. 41, № 2. С. 300 -309.
9. Зарубин В.С., Кувыркин Г.Н. Математические модели механики и электродинамики сплошной среды. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 512 с.
10. Власова Е.А., Зарубин В.С., Кувыркин Г.Н. Приближенные методы математической физики (2-е изд., стереотипное). М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 700 с.
11. Глаголев К.В., Морозов А.Н. Физическая термодинамика: 2-е изд., испр. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 272 с.
12. Зарубин В.С. Инженерные методы решения задач теплопроводности. М.: Энергоатомиздат, 1983. 328 с.
13. Аттетков А.В., Зарубин В.С., Канатников А.Н. Введение в методы оптимизации. М.: Финансы и статистика, ИНФРА-М, 2008. 272 с.
14. Аттетков А.В., Зарубин В.С., Канатников А.Н. Методы оптимизации. М.: Издательский центр РИОР, 2012. 270 с.
15. Parks J.R. Criticality Criteria for Various Configurations of a Self-Heating Chemical as Functions of Activation Energy and Temperature of Assembly. J. Chem. Phys. 1961. Vol. 34. № 1. Pp. 46-50. DOI: 10.1016/0022-247X(81)90213-4
Для цитирования:
Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю. Вариационный подход к анализу модели теплового взрыва в твердом теле. Математика и математическое моделирование. 2016;(5):29-45. https://doi.org/10.7463/mathm.0516.0847523
For citation:
Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. mathematical model of thermal explosion, the dual variational formulation of nonlinear problem, alternative functional. Mathematics and Mathematical Modeling. 2016;(5):29-45. (In Russ.) https://doi.org/10.7463/mathm.0516.0847523