Preview

Математика и математическое моделирование

Расширенный поиск

Математическое моделирование температурного состояния оболочки цилиндрической криогенной емкости при заполнении и опорожнении

Полный текст:

Аннотация

С учетом особенностей теплообмена в криогенной емкости построена математическая модель, описывающая температурное состояние тонкостенной оболочки цилиндрического бака для сжиженного газа при его заполнении и опорожнении. Проведен количественный анализ этой модели при постоянной скорости перемещения уровня криогенной жидкости, а также для случаев неподвижного уровня и уровня, совершающего гармонические колебания. Установлены предельные варианты квазистационарного распределения температуры вдоль образующей оболочки в подвижной системе координат при возрастании скорости заполнения или опорожнения емкости. Методом интегрального преобразования Лапласа решена нестационарная задача теплопроводности в подвижной системе координат для несмоченной части оболочки емкости. Анализ решения этой задачи позволил для случая перемещения уровня жидкости с постоянной скоростью оценить время установления квазистационарного распределения температуры вдоль образующей оболочки емкости. Представленные расчетные зависимости могут быть использованы при анализе напряженно-деформированного состояния и устойчивости оболочки криогенной емкости и для оценки потерь криогенной жидкости вследствие ее испарения.

DOI: 10.7463/mathm.0615.0829350

Об авторах

В. С. Зарубин
МГТУ им. Н.Э. Баумана
Россия


В. Н. Зимин
МГТУ им. Н.Э. Баумана
Россия


Г. Н. Кувыркин
МГТУ им. Н.Э. Баумана
Россия


Список литературы

1. Феодосьев В.И. Основы техники ракетного полета. М.: Наука, 1979. 496 с.

2. Ковалев Б.К. Развитие ракетно-космических систем выведения. М.: Изд-во МГТУ им. Н.Э.Баумана, 2014. 400 с.

3. Альтернативные топлива для двигателей внутреннего сгорания / Под общ. ред. А.А. Александрова, В.А. Маркова. М.: ООО НИЦ "Инженер", ООО "Онико-М", 2012. 791 c.

4. Горбачев С.П., Коледова К.И., Красноносова С.Д. Термодинамические модели заправки резервуара криогенной жидкостью // Технические газы. 2011. № 5. C. 32-40.

5. Балабух Л.И., Колесников К.С., Зарубин В.С., Алфутов Н.А., Усюкин В.И., Чижов В.Ф. Основы строительной механики ракет. М.: Высшая школа, 1969. 496 с.

6. Зарубин В.С., Кувыркин Г.Н. Математическое моделирование термомеханических процессов при интенсивном тепловом воздействиии // Теплофизика высоких температур. 2003. Т. 41. № 2. С. 300-309.

7. Зарубин В.С., Кувыркин Г.Н. Особенности математического моделирования технических устройств // Математическое моделирование и численные методы. 2014. Т. 1 № 1-1. С. 5--17.

8. Кутателадзе С.С., Боришанский В.М. Справочник по теплопередаче. М.: Госэнергоиздат, 1958. 414 с.

9. Физические величины: Справочник / Под ред. И.С.Григорьева, Е.З.Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.

10. Малков М.П., Данилов И.Б., Зельдович А.Г., Фрадков А.Б. Справочник по физико-техническим основам криогеники / Под ред. М.П.~Малкова. М.: Энергоатомиздат, 1985. 432 с.

11. Теория тепломассообмена / Под ред. А.И. Леонтьева. М.: Изд-во МГТУ им. Н.Э. Баумана, 1997. 683 с.

12. Григорьев В.А., Павлов Ю.М., Аметистов Е.В. Кипение криогенных жидкостей / Под ред. Д.А. Лабунцова. М.: Энергия, 1977. 289 с.

13. Веркин Б.И., Кириченко Ю.А., Русанов К.В. Теплообмен при кипении криогенных жидкостей. Киев: Наукова думка, 1987. 240 с.

14. Кутателадзе С.С. Основы теории теплообмена. Новосибирск: Наука, 1970. 659 с.

15. Зарубин В.С. Температурные поля в конструкции летательных аппаратов. М.: Машиностроение, 1966. 216 с.

16. Черкасов С.Г., Моисеева Л.А. Влияние продольного перетока тепла на распределение температуры в движущемся ребре при скачкообразном распределении коэффициента теплообмена // Теплофизика высоких температур. 2015. Т. 53. № 5. С. 807--809.

17. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 488 с.

18. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.

19. Карташов Э.М. Аналитические методы в теории теплопроводности твердых тел. М.: Высшая школа, 2001. 550 с.


Для цитирования:


Зарубин В.С., Зимин В.Н., Кувыркин Г.Н. Математическое моделирование температурного состояния оболочки цилиндрической криогенной емкости при заполнении и опорожнении. Математика и математическое моделирование. 2015;(6):44-60.

For citation:


Zarubin V.S., Zimin V.N., Kuvyrkin G.N. Mathematical Modeling of the Thermal Shell State of the Cylindrical Cryogenic Tank During Filling and Emptying. Mathematics and Mathematical Modeling. 2015;(6):44-60. (In Russ.)

Просмотров: 255


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2412-5911 (Online)