Preview

Математика и математическое моделирование

Расширенный поиск
Научно-практический рецензируемый журнал

Сетевое издание «Математика и математическое моделирование» — периодическое рецензируемое научное издание, которое отражает оригинальные научные результаты теоретических и прикладных исследований по широкому кругу проблем в области математики, а также в области системного анализа, управления и обработки информации, математического моделирования, численных методов и комплексов программ, проводимых в естественных науках, технике и технологиях.

 В журнале публикуются оригинальные работы по следующим научным направлениям:

– Математика

– Механика

– Физика

– Информатика, вычислительная техника и управление

Главный редактор журнала — чл.-корр РАН, д.ф.-м.н., профессор А.П. Крищенко.

В редакционную коллегию журнала входят ведущие российские и зарубежные ученые: три академика РАН, один член-корреспондент РАН, четырнадцать докторов технических наук, три доктора физико-математических наук, шестнадцать профессоров.

В редакционной коллегии журнала представлены следующие организации: МГТУ им. Н.Э. Баумана;  МГУ им. М.В. Ломоносова; Instituto Politecnico Nacional, CITEDI MEXICO;

ФИЦ «Информатика и управление» РАН; Новосибирский государственный технический университет; School of Engineering and Material science, Queen Mary Univercity of London.

Журнал принимает статьи на русском и английском языках. Русскоязычные статьи включают полный текст на русском языке и аннотированную часть (реферат и список литературы) на английском языке. Англоязычные статьи, наоборот, включают полный текст на английском языке и аннотированную часть на русском языке. Сайт журнала поддерживает русскоязычную и англоязычную версии.

Материалы для публикации (статья и сопровождающие ее документы) представляются в редакцию журнала через Интернет путем оформления заявки на публикацию на сайте журнала в личном кабинете автора.

Журнал имеет регистрацию средства массовой информации ЭЛ № ФС 77 - 71245. Публикациям присваивается международный индекс DOI. Журнал имеет международный стандартный сериальный номер периодических печатных изданий ISSN 2412-5911. В мае 2017 г. журнал был включен в перечень ВАК рецензируемых научных изданий, в которых публикуются основные научные результаты диссертаций.

 

 

Текущий выпуск

№ 4 (2020)

ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

1-51 148
Аннотация

С помощью численного расчета описывается работа алгоритмов пермутаций матриц, основанных на циклических сдвигах строк и столбцов. Такой выбор алгоритмов дискретного преобразования обоснован удобством клеточно-автоматных формулировок, которые и приводятся. Получены эмпирические формулы для периода пермутаций; для последнего алгоритма формула периода носит рекуррентный характер. Для базовой и наиболее простой схемы период N(n) имеет асимптотику exp(2n)/n для матрицы nxn с попарно различными элементами. Несмотря на усложнение схемы алгоритма, две другие модификации дают лишь полиномиальный рост степени не выше 3. Четвертая схема имеет нетривиальную зависимость периода, но не выше экспоненциальной. В ряде случаев алгоритмы порождают особые пермутации: поворот, отражение и перестановку блоков для матрицы 2kx2k. Эти формулы тесно связаны с индивидуальными траекториями элементов, а они – с влиянием границ, что дает ветвление порядка матрицы по классу вычета по модулю 3,4 или 12. Визуализации этих траекторий приводятся в расширенном поле КА. В качестве параметра динамики КА анализируются две «метрики перемешанности» на пермутациях матрицы (по сравнению с начальной). Для всех схем и большинства ветвей поведение этих метрик представлено на графиках и гистограммах (условно: плотности распределения), показывающих, как часто встречаются по периоду пермутации с заданным интервалом значений метрик. Практическое значение работы состоит в оценке применения КА в областях генерации псевдослучайных чисел и криптографии.

СИСТЕМНЫЙ АНАЛИЗ И ОБРАБОТКА ИНФОРМАЦИИ

52-64 130
Аннотация

В работе исследуются проблемы редукции (декомпозиции) моделей многомерных данных в виде гиперкубовых OLAP-структур. OLAP обработка данных не допускает изменения размерности пространства. С увеличением объемов данных падает производительность вычислений кубовых структур. Методы редукции больших кубов данных на подкубы с меньшими объемами позволяют решать проблему снижения производительности вычислений.

Рассматриваются задачи редукции для случаев, когда агрегирование критериев уже определено решёткой куба, а декомпозиция куба на меньшие по размерности кубы нужна для снижения времени вычисления полной решётки при динамическом изменении данных в кубе.

Цель работы состоит в нахождении условий уменьшения вычислительной сложности решения задач анализа данных редукционными методами, получении точных количественных границ уменьшения сложности декомпозиционных методов из класса полиномиальной степеней сложности, установлении характера зависимости вычислительной производительности от структурных свойств гиперкуба и определении количественных границ вычислительной производительности решения декомпозиционных задач агрегирования данных.

Проведено исследование вычислительной сложности декомпозиционных методов анализа многомерных гиперкубов полиномиально-логарифмической и полиномиальной степеней сложности. Найдена точная верхняя граница уменьшения сложности декомпозиционных методов анализа исходного OLAP--гиперкуба данных по отношению к недекомпозиционным, и на их основе доказаны критерии эффективного применения редукционных методов анализа гиперкубовых структур по сравнению с традиционными нередукционными методами.

Приведены примеры методов декомпозиции кубовых структур, как уменьшающих, так и увеличивающих вычислительную сложность по сравнению с вычислениями по полной модели.

Результаты работы могут быть использованы при обработке и анализе массивов информации гиперкубовых структур аналитических OLAP-систем, относящихся к классу BigData, или сверхбольших компьютерных систем многомерных данных.



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.